Understanding What’s in an Azure AD Access Token

Critical Piece When Connecting to the Microsoft Graph

By now, most people who write PowerShell code to interact with Microsoft 365 workloads understand that sometimes it’s necessary to use Microsoft Graph API queries instead of “pure” PowerShell cmdlets. The Graph queries are usually faster and more reliable when retrieving large quantities of data, such as thousands of Microsoft 365 Groups. Over the last few years, as people have become more familiar with the Microsoft Graph, an increased number of scripts have replaced cmdlets with Graph queries. All these scripts use Azure AD access tokens, as does any utility which interacts with the Microsoft Graph, like the Graph Explorer (Figure 1).

The Graph Explorer displays its Azure AD access token
Figure 1: The Graph Explorer displays its Azure AD access token

In the remainder of this article, I explore what an Azure AD access token contains.

The Need for Access Tokens

Graph queries need authentication before they can run and the Graph API uses modern authentication. Azure AD registered applications bridge the gap between PowerShell and the Graph. The apps hold details used during authentication such as the app name, its identifier, the tenant identifier, and some credentials (app secret or certificate. The app also holds permissions granted to access data through Graph APIs and other APIs. When the time comes to authenticate, the service principal belonging to an app uses this information to request an access token from Azure AD. Once Azure AD issues the access token, requests issued to the Invoke-RestMethod or Invoke-WebRequest cmdlets can include the access token to prove that the app has permission to access information.

At first glance, an Azure AD access token is a confused mass of text. Here’s how PowerShell reports the content of an access token:

eyJ0eXAiOiJKV1QiLCJub25jZSI6IlFQaVN1ck1VX3gtT2YzdzA1YV9XZzZzNFBZRFUwU2NneHlOeDE0eVctRWciLCJhbGciOiJSUzI1NiIsIng1dCI6Ik1yNS1BVWliZkJpaTdOZDFqQmViYXhib1hXMCIsImtpZCI6Ik1yNS1BVWliZkJpaTdOZDFqQmViYXhib1hXMCJ9.eyJhdWQiOiJodHRwczovL2dyYXBoLm1pY3Jvc29mdC5jb20iLCJpc3MiOiJodHRwczovL3N0cy53aW5kb3dzLm5ldC9iNjYyMzEzZi0xNGZjLTQzYTItOWE3YS1kMmUyN2Y0ZjM0NzgvIiwiaWF0IjoxNjQ0ODQ1MDc3LCJuYmYiOjE2NDQ4NDUwNzcsImV4cCI6MTY0NDg0ODk3NywiYWlvIjoiRTJaZ1lEaW1McEgwTSt5QTk5NmczbWZUUXlYN0FBPT0iLCJhcHBfZGlzcGxheW5hbWUiOiJHZXRUZWFtc0xpc3QiLCJhcHBpZCI6IjgyYTIzMzFhLTExYjItNDY3MC1iMDYxLTg3YTg2MDgxMjhhNiIsImFwcGlkYWNyIjoiMSIsImlkcCI6Imh0dHBzOi8vc3RzLndpbmRvd3MubmV0L2I2NjIzMTNmLTE0ZmMtNDNhMi05YTdhLWQyZTI3ZjRmMzQ3OC8iLCJpZHR5cCI6ImFwcCIsIm9pZCI6IjM4NTRiYjA4LTNjMmMtNGI1Ny05NWZjLTI0ZTA3OGQzODY4NSIsInJoIjoiMC5BVndBUHpGaXR2d1Vva09hZXRMaWYwODBlQU1BQUFBQUFBQUF3QUFBQUFBQUFBQmNBQUEuIiwicm9sZXMiOlsiVGVhbVNldHRpbmdzLlJlYWRXcml0ZS5BbGwiLCJUZWFtTWVtYmVyLlJlYWQuQWxsIiwiR3JvdXAuUmVhZC5BbGwiLCJEaXJlY3RvcnkuUmVhZC5BbGwiLCJUZWFtLlJlYWRCYXNpYy5BbGwiLCJUZWFtU2V0dGluZ3MuUmVhZC5BbGwiLCJPcmdhbml6YXRpb24uUmVhZC5BbGwiLCJBdWRpdExvZy5SZWFkLkFsbCJdLCJzdWIiOiIzODU0YmIwOC0zYzJjLTRiNTctOTVmYy0yNGUwNzhkMzg2ODUiLCJ0ZW5hbnRfcmVnaW9uX3Njb3BlIjoiRVUiLCJ0aWQiOiJiNjYyMzEzZi0xNGZjLTQzYTItOWE3YS1kMmUyN2Y0ZjM0NzgiLCJ1dGkiOiI3RVkyWnVXV2JFYVF0T3piVVlwOUFBIiwidmVyIjoiMS4wIiwid2lkcyI6WyIwOTk3YTFkMC0wZDFkLTRhY2ItYjQwOC1kNWNhNzMxMjFlOTAiXSwieG1zX3RjZHQiOjEzMDI1NDMzMTB9.N9yvmkCedti2fzT44VfBkN7GvuCInrIgiMgNxdyZeAyxnbdZjEhxHmNdU6HLLHQ3J-GonpPdt28dKwYxgLcrSibGzSPVHddh6MDPYutSwfIxh2oRanxhgFOWVJADfbFoCxsRFDhKJNT39bsauIUiRNzGzbb6dvWuZQ8LrgWjZzjae2qxVxj9jvYgjXEypeYZgLvPOzJiBCuluAMH3TjPuS-CuglFK_edn4CS-ztCwM0hmDFD5BLNZqng5P2KqGTEgjkMKoyIJ8yTGBJpASfdqqEFqWzQwcQ9ese924qNC3hJR_5TWHp2Fl73bpdhwBHRL5UwGTPi9_ysYdndKhXwgA

Deciphering an Access Token

Azure AD access tokens comply with the OAuth 2.0 bearer token standard (RFC6750) and are structured as JSON-formatted Web Tokens. We can’t see the JSON content because it is base64Url encoded and signed. However, if you paste the token into a site like https://jwt.ms/, the site will decrypt the list of claims included in the token and we’ll see something like the details shown below for the Azure AD access token featured above:

{ "typ": "JWT", 
"nonce": "gq3zmJhybfXGDGqt6RO2PX9s0cimmRpSRrTO90sQ4w4", 
"alg": "RS256",
 "x5t": "Mr5-AUibfBii7Nd1jBebaxboXW0", 
"kid": "Mr5-AUibfBii7Nd1jBebaxboXW0" 
}.
{ "aud": "https://graph.microsoft.com", 
"iss": "https://sts.windows.net/a662313f-14fc-43a2-9a7a-d2e27f4f3478/", 
"iat": 1644833772, 
"nbf": 1644833772,
 "exp": 1644837672,
 "aio": "E2ZgYJif1+eocevtzqRIrgDGA2V3AQ==",
 "app_displayname": "ReportDLs", 
"appid": "76c31534-ca1f-4d46-959a-6159fcb2f77a", 
"appidacr": "1",
 "idp": "https://sts.windows.net/a662313f-14fc-43a2-9a7a-d2e27f4f3478/", 
"idtyp": "app",
 "oid": "4449ce36-3d83-46fb-9045-2d1721e8f032",
 "rh": "0.AVwAPzFitvwUokOaetLif080eAMAAAAAAAAAwAAAAAAAAABcAAA.",
 "roles": 
[ "Group.Read.All", "Directory.Read.All", "User.Read.All" ],
 "sub": "4449ce36-3d83-46fb-9045-2d1721e8f032", 
"tenant_region_scope": "EU", 
"tid": "a662313f-14fc-43a2-9a7a-d2e27f4f3478",
 "uti": "BU1RVc7mHkmBq2FMcZdTAA", 
"ver": "1.0", 
"wids": [ "0997a1d0-0d1d-4acb-b408-d5ca73121e90" ],
 "xms_tcdt": 1302543310 
}
.[Signature]

The deciphered token divides into three parts: header, payload, and signature. The aim of a token is not to hide information, so the signature is not protected by encryption. Instead, it’s signed using a private key by the issuer of the token. Details of the algorithm and private key used to sign an access token are in its header. An application can validate the signature of an access token if necessary, but this is not usually done when running a PowerShell script. The payload is the location for the claims made by the token and is the most interesting place to check.

Claims and Scopes

The list of claims in the access token includes simple claims and scopes (groups of claims). A claim is an assertion about something related to the token. In this case, the claims tell us details like:

  • The tenant (tid).
  • The intended consumer of the token (aud): https://graph.microsoft.com.
  • The app name (app_displayname).
  • The app identifier (appid).
  • The security token service (STS) responsible for issuing the token (iss): https://sts.windows.net/a662313f-14fc-43a2-9a7a-d2e27f4f3478/.
  • The generation time for the token (iat).
  • The time when the token expires (exp). All dates are in Unix epoch time, so 1644837672 means 11:21:12 GMT on February 14, 2022. By default, access tokens issued by Azure AD last one hour, except those used by applications which support continual access evaluation (CAE), where Azure AD issues 28-hour access tokens because it can terminate access at any time and force the user to reauthenticate should a critical user event (like a password change) happen.
  • The identifier for the object in the Microsoft identity system used for authentication (oid). In this case, the script uses a registered Azure AD app, so the value is the service principal for the app. You can test this by running the Get-AzureADServicePrincipal cmdlet:

Get-AzureADServicePrincipal -ObjectId 4449ce36-3d83-46fb-9045-2d1721e8f032

ObjectId                             AppId                                DisplayName
--------                             -----                                -----------
4449ce36-3d83-46fb-9045-2d1721e8f032 76c31534-ca1f-4d46-959a-6159fcb2f77a ReportDLs

Scopes are a logical grouping of claims, and they can serve as a mechanism to limit access to resources. The roles claim contains a scope of Graph API permissions starting with Group.Read.All and ending with User.Read.All. We therefore know that this app has consent from the organization to use the permissions stated in the scope when it executes Graph API queries. The list of permissions is enough to allow the PowerShell script (in this case, one to generate a report of distribution list memberships) to query the Graph for a list of all groups and read the membership of each group.

From bitter experience, I know how easy it is to get Graph permissions wrong. One way to check is sign into the Graph Explorer and run the query (here’s an example) to check what permissions the Explorer uses to execute the query. However, you can also dump the access token to check that the set of permissions in the access token matches what you expect. It’s possible that you might have requested some application permissions for the app and failed to gain administrator consent for the request, meaning that the access token issued to the app by Azure AD won’t include the requested permissions.

Using the Access Token

Once we’re happy that we have a good access token, we can use it with Graph queries. Here’s how to fetch the list of distribution groups in a tenant. The access token is included in the $Headers variable passed to the Invoke-RestMethod cmdlet.

$Headers = @{Authorization = "Bearer $token"}

$Uri = "https://graph.microsoft.com/beta/groups?`$filter=Mailenabled eq true and not groupTypes/any(c:c+eq+'Unified')&`$count=true"
[array]$DLs = (Invoke-RestMethod -Uri $Uri -Headers $Headers -Method Get -ContentType "application/json")
$DLs = $DLs.Value

And if everything goes to plan, we should have a set of distribution lists to process. If not, it’s bound to be a problem with your access token, so it’s time to return to square one and restart the acquisition process.


Learn more about how Office 365 really works on an ongoing basis by subscribing to the Office 365 for IT Pros eBook. Our monthly updates keep subscribers informed about what’s important across the Office 365 ecosystem.

6 Replies to “Understanding What’s in an Azure AD Access Token”

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.